ExxonMobil
Refining & Supply Company

Global Remediation

4096 Piedmont Avenue #194
Oakland, California 94611
510.547.8196
510.547.8706 Fax
jennifer.c.sedlachek@exxonmobil.com

Jennifer C. Sedlachek Project Manager

EXONMobilRefining & Supply

November 8, 2005

Ms. Lisa Esposito Maples Homeowners Association 2890 North Main Street, Suite 304 Walnut Creek, California 94597

RE: Former Exxon RAS #7-3035/4501 Sonoma Highway, Santa Rosa, California.

Dear Ms. Esposito:

Attached for your review and comment is a document entitled *Laboratory Analysis Results of Groundwater Sample*, dated November 3, 2005, for the above-referenced site. The document was prepared by Environmental Resolutions, Inc. (ERI) of Petaluma, California, and provides the analytical laboratory results for the third quarter 2005 groundwater sample collected from the private water well located adjacent to 4397 Sonoma Highway, in Santa Rosa, California.

These data were generated by ERI on behalf of ExxonMobil to comply with requirements of the Regional Board in accordance with state regulations. ExxonMobil makes no representations as to these data for any other purpose.

Thank you for your continued cooperation in providing access to sample your well.

Water sample analytical results including analytical data sheets are provided quarterly to the office of the Regional Board. If you have any questions, please contact Ms. Jo Bentz of the Regional Board at 707.576.2838.

Sincerely,

Jennifer C. Sedlachek Project Manager

Attachment:

ERI's Laboratory Analysis Results of Groundwater Sample, dated November 3, 2005.

cc:

w/ attachment

udbelle

Ms. Jo Bentz, California Regional Water Quality Control Board, North Coast Region

w/o attachment

Ms. Paula Sime, Environmental Resolutions, Inc.

November 3, 2005 ERI 200313,L69

Ms. Jennifer C. Sedlachek ExxonMobil Refining & Supply - Global Remediation 4096 Piedmont Avenue #194 Oakland, California 94611

Subject:

Laboratory Analysis Results of Groundwater Sample Collected from Private Water Well

Located at 4389 Highway 12, Santa Rosa, California.

Ms. Sedlachek:

At the request of Exxon Mobil Corporation (Exxon Mobil), Environmental Resolutions, Inc. (ERI) is providing the analytical laboratory results of the groundwater samples collected from the private water wells located at 4389 Highway 12, in Santa Rosa, California, on September 8, 2005. The samples were collected by ERI and analyzed by a California state-certified laboratory, under Chain-of-Custody protocol, for total petroleum hydrocarbons as gasoline, total petroleum hydrocarbons as diesel, and methanol using Environmental Protection Agency (EPA) Method 8015B, and benzene, toluene, ethylbenzene, and total xylenes and oxygenated compounds (including methyl tertiary butyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, tertiary butyl alcohol, di-isopropyl ether, and ethanol) and lead scavengers (including 1,2-dibromoethane and 1,2-dichloroethane,)using EPA Method 524.2. The laboratory analysis report for the private water well sample is attached. The laboratory results are summarized on Tables 1A and 1B.

Please contact Ms. Paula Sime, ERI's project manager for this site, at (707) 766-2000 with any questions.

Sincerely,

Environmental Residudons, Inc

Technical

Paula Sime Project Manager

Attachments: Table

Table 1A:

Private Water Well Sampling Data

Table 1B:

Additional Private Water Well Sampling Data

Laboratory Analysis Report

cc: Ms. Lisa Esposito

Ms. Jo Bentz, California Regional Water Quality Control Board, North Coast Region

TABLE 1A PRIVATE WATER WELL SAMPLING DATA

Former Exxon Service Station 7-3035 4501 Sonoma Highway Santa Rosa, California (Page 1 of 1)

Well ID#	Sampling	TPHd	TPHg	В	Т	Ε	Х	MTBE			
	Date	<			μg/L			>			
W4389	10/04/04	<50	<50.0	<0.50	<0.50	<0.50	<1.00	1.30			
********	06/07/05	<50	<50.0	<0.50	<0.50	<0.50	<1.00	1.20			
	09/08/05	<50.0	<50.0	<0.500	<0.500	<0.500	<1.00	3.88			
Primary MCL		NA	NA	1.0	150	700	1,800	13			
Secondary MCL		NA	NA	NA	NA	NA	NA	5			
Notes:											
TPHd	=	Total petroleum h	ydrocarbons as di	esel analyzed usir	ng EPA Method 8	015B.					
TPHg	=	Total petroleum h	vdrocarbons as da	asoline analyzed u	ising FPA Methor	d 8015B					
			otal petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B. ethyl tertiary butyl ether analyzed using EPA Method 524.2.								
MTBE	=	•		•	•	a 55 15 5 .					
MTBE BTEX	=	•	yl ether analyzed	using EPA Method	d 524.2.						
		Methyl tertiary but	yl ether analyzed , ethylbenzene, ar	using EPA Methoo nd total xylenes an	d 524.2. alyzed using EP						
BTEX	=	Methyl tertiary but Benzene, toluene	yl ether analyzed , ethylbenzene, ar ether analyzed us	using EPA Methoo d total xylenes an sing EPA Method	d 524.2. alyzed using EP 524.2.						
BTEX ETBE	=======================================	Methyl tertiary but Benzene, toluene Ethyl tertiary butyl	yl ether analyzed, , ethylbenzene, ar ether analyzed us nyl ether analyzed	using EPA Methoo d total xylenes an sing EPA Method using EPA Metho	d 524.2. alyzed using EP 524.2. od 524.2.						
BTEX ETBE TAME	= = =	Methyl tertiary but Benzene, toluene Ethyl tertiary butyl Tertiary amyl metl	yl ether analyzed, , ethylbenzene, ar ether analyzed u nyl ether analyzed hol analyzed using	using EPA Method of total xylenes an sing EPA Method using EPA Method g EPA Method 524	d 524.2. lalyzed using EP 524.2. lod 524.2. 4.2.						
BTEX ETBE TAME TBA	= = = =	Methyl tertiary but Benzene, toluene Ethyl tertiary butyl Tertiary amyl met Tertiary butyl alco	yl ether analyzed, ethylbenzene, an ether analyzed us only ether analyzed using analyzed using leanalyzed us	using EPA Method of total xylenes an sing EPA Method using EPA Method g EPA Method 524.2	d 524.2. alyzed using EP 524.2. od 524.2. 4.2.						
BTEX ETBE TAME TBA EDB	= = = =	Methyl tertiary but Benzene, toluene Ethyl tertiary butyl Tertiary amyl metl Tertiary butyl alco 1,2-dibromoethan	yl ether analyzed, ethylbenzene, an ether analyzed us only ether analyzed hol analyzed using analyzed using e analyzed using e analyzed using e	using EPA Method do total xylenes and sing EPA Method dusing EPA Method 524.2 EPA Method 524.2 EPA Method 524.2	d 524.2. alyzed using EP 524.2. od 524.2. 4.2. 2.						
BTEX ETBE TAME TBA EDB 1,2-DCA	= = = = =	Methyl tertiary but Benzene, toluene Ethyl tertiary butyl Tertiary amyl met Tertiary butyl alco 1,2-dibromoethan 1,2-dichloroethan	yl ether analyzed, ethylbenzene, ar ether analyzed us hyl ether analyzed using analyzed using le analyzed using E analyzed using E	using EPA Method d total xylenes an sing EPA Method using EPA Method 524.2 EPA Method 524.2 EPA Method 524.2 PA Method 524.2	d 524.2. alyzed using EP 524.2. od 524.2. 4.2. 2.						
BTEX ETBE TAME TBA EDB 1,2-DCA DIPE	= = = = = =	Methyl tertiary but Benzene, toluene Ethyl tertiary butyl Tertiary amyl metl Tertiary butyl alco 1,2-dibromoethan 1,2-dichloroethan Di-isopropyl ether	yl ether analyzed, ethylbenzene, an ether analyzed usinyl ether analyzed using le analyzed using le analyzed using E analyzed using E analyzed using E analyzed using E	using EPA Method total xylenes and xylenes	d 524.2. alyzed using EP 524.2. od 524.2. 4.2. 2.						
BTEX ETBE TAME TBA EDB 1,2-DCA DIPE Ethanol	= = = = = =	Methyl tertiary but Benzene, toluene Ethyl tertiary butyl Tertiary amyl met Tertiary butyl alco 1,2-dibromoethan 1,2-dichloroethan Di-isopropyl ether Ethanol analyzed	yl ether analyzed, ethylbenzene, an ether analyzed usinyl ether analyzed using le analyzed using le analyzed using E analyzed Method using EPA Method	using EPA Method total xylenes and xylenes	d 524.2. alyzed using EP 524.2. od 524.2. 4.2. 2.						
BTEX ETBE TAME TBA EDB 1,2-DCA DIPE Ethanol	= = = = =	Methyl tertiary but Benzene, toluene. Ethyl tertiary butyl Tertiary amyl metl Tertiary butyl alco 1,2-dibromoethan 1,2-dichloroethan Di-isopropyl ether Ethanol analyzed Methanol analyzed Micrograms per lit	yl ether analyzed, ethylbenzene, an ether analyzed using the analyzed using analyzed using E analyzed using E analyzed using E analyzed using E using EPA Method using EPA Methoder.	using EPA Method d total xylenes and sing EPA Method dusing EPA Method 524.2 EPA Method 524.2 PA Method 524.2 d 524.2. od 8015B.	d 524.2. alyzed using EP 524.2. od 524.2. 4.2. 2.						
BTEX ETBE TAME TBA EDB 1,2-DCA DIPE Ethanol Methanol µg/L	= = = = = = = =	Methyl tertiary but Benzene, toluene Ethyl tertiary butyl Tertiary amyl met Tertiary butyl alco 1,2-dibromoethan 1,2-dichloroethan Di-isopropyl ether Ethanol analyzed Methanol analyzed	yl ether analyzed, ethylbenzene, an ether analyzed using lether analyzed using lether analyzed using E analyzed using E analyzed using E using EPA Method using EPA Method using EPA Method cared reporting limes analyzed using lether.	using EPA Method d total xylenes and sing EPA Method dusing EPA Method 524.2 EPA Method 524.2 PA Method 524.2 d 524.2 od 8015B.	d 524.2. alyzed using EP/ 524.2. od 524.2. 4.2. 2.	A Method 524.2.					

TABLE 1B ADDITIONAL PRIVATE WATER WELL SAMPLING DATA

Former Exxon Service Station 7-3035 4501 Sonoma Highway Santa Rosa, California (Page 1 of 1)

Well ID#	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanol	Methano
	Date		<		μί	g/L			
		.0.50	10.50	<10.0	<0.50	<0.50	<0.50	<50.0	<10,000
W4389	10/04/04	<0.50	<0.50	<10.0	<0.50 <0.50	<0.50 <0.50	<0.50	<50.0	<5,000
	06/07/05	<0.50	<0.50			< 0.500	<0.500	<50.0	<10,000
	09/08/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	\50.0	10,000
Notes:									
TPHd	=		hydrocarbons as o						
TPHg	=		hydrocarbons as o			nod 8015B.			
MTBE	=		utyl ether analyze						
BTEX	=					PA Method 524.2.			
ETBE	=		yl ether analyzed						
TAME	=		ethyl ether analyze						
TBA	=		ohol analyzed usi					0	
EDB	=		ne analyzed using						
1,2-DCA	=		ne analyzed using						
DIPE	=	Di-isopropyl ethe	er analyzed using	EPA Method 524.	2.				
Ethanol	=	Ethanol analyzed	d using EPA Meth	od 524.2.					
	=	Methanol analyz	ed using EPA Me	thod 8015B.					
Methanol									
Methanol μg/L	=	Micrograms per	liter.						

Esposito (Maples Townhouse)

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

September 28, 2005

Client:

ERI Petaluma (10228)

601 North McDowell Blvd.

Petaluma, CA 94954

Attn:

Paula Sime

Work Order:

NOI1152

Project Name:

Exxon 7-3035 PO:4505890849

Project Nbr:

200313X

Date Received:

09/13/05

SAMPLE IDENTIFICATION

LAB NUMBER

COLLECTION DATE AND TIME

W4389

NOI1152-01

09/08/05 12:00

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory. Report Approved By:

Roxanne Connor

Senior Project Manager

horanne L. Connor

Client ERI Petaluma (10228)

601 North McDowell Blvd.

Petaluma, CA 94954

Paula Sime

Attn

Work Order:

NOI1152

Project Name:

Exxon 7-3035 PO:4505890849

Project Number: Received:

200313X

09/13/05 08:00

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Analyst	Batch
Sample ID: NOI1152-01 (W4389 - (Cround Wate		i. 00/02/05 1	······································					
Purgeable Organic Compounds by EPA		a, Sample	1. 02/00/03 1	2.00					
Tert-Amyl Methyl Ether	ND		ug/L	0.500	,	00/00/00 4 4 4 4			
Benzene	ND		_	0.500	1	09/22/05 14:48	EPA 524.2	МЈН	5093550
Ethyl tert-Butyl Ether	ND		ug/L	0.500	I	09/22/05 14:48	EPA 524.2	МЛН	5093550
Ethylbenzene			ug/L	0.500	1	09/22/05 14:48	EPA 524.2	MJH	5093550
•	ND		ug/L	0,500	I	09/22/05 14:48	EPA 524.2	МЈН	5093550
Isopropyl Ether	ND		ug/L	0.500	1	09/22/05 14:48	EPA 524.2	МЈН	5093550
Toluene	ND		ug/L	0.500	I	09/22/05 14:48	EPA 524.2	MJH	5093550
Methyl tert-Butyl Ether	3.88		ug/L	0.500	1	09/22/05 14:48	EPA 524.2	МЈН	5093550
Tertiary Butyl Alcohol	ND		ug/L	10.0	I	09/22/05 14:48	EPA 524.2	MJH	5093550
1,2-Dibromoethane (EDB)	ND		ug/L	0,500	1	09/22/05 14:48	EPA 524.2	МЛН	5093550
Xylenes, total	ND		ug/L	0.500	1	09/22/05 14:48	EPA 524.2	МЛН	5093550
1,2-Dichloroethane	ND		ug/L	0.500	1	09/22/05 14:48	EPA 524.2	МЈН	5093550
Ethanol	ND		ug/L	50.0	1	09/22/05 14:48	EPA 524.2	МЈН	5093550
Surrogate: 1,2-Dichloroethane-d4 (72-130%)	96 %					09/22/05 14:48	EPA 524.2	м <i>у</i> н м <i>у</i> н	5093550
Surrogate: Dibromofluoromethane (82-120%)	100 %					09/22/05 14:48	EPA 524.2	мын МJН	5093550
Surrogate: Toluene-d8 (81-117%)	95 %					09/22/05 14:48	EPA 524.2	мілн МІН	5093550
Surrogate: 4-Bromofluorobenzene (81-122%)	100 %					09/22/05 14:48	EPA 524.2	MJH MJH	5093550
Alcohols by EPA Method 8015 modified	d							141011	5075550
Methanol	ND		ug/L	10000	1	09/14/05 15:03	SW846 8015B	V) (D)	5091963
Surrogate: Isopropyl Acetate (50-150%)	74 %		C	2220	•	09/14/05 15:03	SW846 8015B	KMR	
Extractable Petroleum Hydrocarbons						09/14/03 13:03	3# 040 6 013B	KMR	5091963
Diesel	MD		_						
	ND		ug/L	50.0	1	09/16/05 01:52	SW846 8015B	mcj	5091917
Surrogate: o-Terphenyl (55-150%)	88 %					09/16/05 01:52	SW846 8015B	mcj	5091917
Purgeable Petroleum Hydrocarbons									
GRO as Gasoline	ND		ug/L	50.0	1	09/17/05 11:46	SW846 8015B		£002£22
Surrogate: a,a,a-Trifluorotoluene (63-134%)	74 %		ū	25.5	•	09/17/05 11:46		ac	5092532
,						03/1//03 11:40	SW846 8015B	ac	5092532

ERI Petaluma (10228) Client

601 North McDowell Blvd.

Petaluma, CA 94954

Paula Sime

Attn

Work Order:

NOI1152

Project Name:

Exxon 7-3035 PO:4505890849

Project Number: Received:

200313X

09/13/05 08:00

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Extractable Petroleum Hydrocarbons SW846 8015B	5091917	NOI1152-01	1000,00	1.00	09/14/05 10:30	RXT	EPA 3510C

Client ERI Petaluma (10228)

601 North McDowell Blvd.

Petaluma, CA 94954

Paula Sime

Attn

Work Order:

NOI1152

Project Name:

Exxon 7-3035 PO:4505890849

Project Number: Received: 200313X 09/13/05 08:00

PROJECT QUALITY CONTROL DATA Blank

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Purgeable Organic Compounds	by EPA Method 524.2			******		
5093550-BLK1	•					
Tert-Amyl Methyl Ether	<0.190		ug/L	5093550	5093550-BLK1	09/20/05 02:14
Benzene	<0.300		ug/L	5093550	5093550-BLK1	09/20/05 02:14
Ethyl tert-Butyl Ether	<0.100		ug/L	5093550	5093550-BLK1	09/20/05 02:14
Ethylbenzene	<0.220		ug/L	5093550	5093550-BLK1	09/20/05 02:14
Isopropyl Ether	< 0.0500		ug/L	5093550	5093550-BLK1	09/20/05 02:14
Toluene	<0.220		ug/L	5093550	5093550-BLK1	09/20/05 02:14
Methyl tert-Butyl Ether	<0.240		ug/L	5093550	5093550-BLK1	09/20/05 02:14
Tertiary Butyl Alcohol	<1.00		ug/L	5093550	5093550-BLK1	09/20/05 02:14
1,2-Dibromoethane (EDB)	<0.180		ug/L	5093550	5093550-BLK1	09/20/05 02:14
Xylenes, total	< 0.630		ug/L	5093550	5093550-BLK1	09/20/05 02:14
1,2-Dichloroethane	<0.0600		ug/L	5093550	5093550-BLK1	09/20/05 02:14
Ethanol	<30.7		ug/L	5093550	5093550-BLK1	09/20/05 02:14
Surrogate: 1,2-Dichloroethane-d4	97%			5093550	5093550-BLK1	09/20/05 02:14
Surrogate: Dibromofluoromethane	96%			5093550	5093550-BLK1	09/20/05 02:14
Surrogate: Toluene-d8	97%			5093550	5093550-BLK1	09/20/05 02:14
Surrogate: 4-Bromofluorobenzene	104%			5093550	5093550-BLK1	09/20/05 02:14
Alcohols by EPA Method 8015 m	ıodified					
5091963-BLK1						
Methanol	<1000		ug/L	5091963	5091963-BLK1	09/14/05 12:58
Surrogate: Isopropyl Acetate	76%			5091963	5091963-BLK1	09/14/05 12:58
Extractable Petroleum Hydroca	rbons					
5091917-BLK1						
Diesel	<33.0		ug/L	5091917	5091917-BLK1	09/15/05 20:59
Surrogate: o-Terphenyl	103%			5091917	5091917-BLK1	09/15/05 20:59
Purgeable Petroleum Hydrocarb	ons					
5092532-BLK1						
GRO as Gasoline	<33.0		ug/L	5092532	5092532-BLK1	09/17/05 03:57
Surrogate: a,a,a-Trifluorotoluene	74%			5092532	5092532-BLK1	09/17/05 03:57
5092532-BLK2						
GRO as Gasoline	<33.0		ug/L	5092532	5092532-BLK2	09/18/05 09:29
Surrogate: a,a,a-Trifluorotoluene	97%			5092532	5092532-BLK2	09/18/05 09:29

Client ERI Petaluma (10228)

601 North McDowell Blvd.

Petaluma, CA 94954

Paula Sime

Attn

Work Order:

NOI1152

Project Name:

Exxon 7-3035 PO:4505890849

Project Number: 200313X Received:

09/13/05 08:00

PROJECT QUALITY CONTROL DATA

LCS

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Purgeable Organic Compounds by E	PA Method 524.2				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • •	
5093550-B\$1								
Tert-Amyl Methyl Ether	50.0	49.1		ug/L	98%	70 - 141	5093550	00/20/05 00:1
Benzene	50,0	48.2		ug/L	96%	70 - 141	5093550	09/20/05 00:1
Ethyl tert-Butyl Ether	50.0	49.0		ug/L ug/L	98%	69 - 142		09/20/05 00:1
Ethylbenzene	50.0	52.5		ug/L	105%	70 - 130	5093550	09/20/05 00:1
Isopropyl Ether	50.0	47.5		ug/L ug/L	95%	70 - 130 70 - 130	5093550	09/20/05 00:1
Toluene	50.0	49.0		ug/L	98%		5093550	09/20/05 00:1
Methyl tert-Butyl Ether	50.0	48.7		ug/L ug/L	97%	70 - 130	5093550	09/20/05 00:1
Tertiary Butyl Alcohol	500	417		_		70 - 130	5093550	09/20/05 00:1
1,2-Dibromoethane (EDB)	50.0	51,5		ug/L	83%	70 - 130	5093550	09/20/05 00:1
Xylenes, total	150	144		ug/L	103%	70 - 130	5093550	09/20/05 00:1
1,2-Dichloroethane	50.0	52.9		ug/L	96%	70 - 130	5093550	09/20/05 00:1
Ethanol	5000	4260		ug/L	106%	70 - 130	5093550	09/20/05 00:1
Surrogate: 1,2-Dichloroethane-d4	25.0	21.1		ug/L	85%	48 - 164	5093550	09/20/05 00:1
Surrogate: 1,2-Dichloroethane-d4	25.0	21.1			84%	72 - 130	5093550	09/20/05 00:1
Surrogate: Dibromofluoromethane	25.0	23.4			84%	72 - 130	5093550	09/20/05 00:1
Surrogate: Dibromofluoromethane	25.0	23.4			94%	82 - 120	5093550	09/20/05 00:1
Surrogate: Toluene-d8	25.0				94%	82 - 120	5093550	09/20/05 00:1
Surrogate: Toluene-d8	25.0	25.1 25.1			100%	81 - 117	5093550	09/20/05 00:1
Surrogate: 4-Bromofluorobenzene	25.0				100%	81 - 117	5093550	09/20/05 00:1
Surrogate: 4-Bromofluorobenzene	25.0	23.2			93%	81 - 122	5093550	09/20/05 00:1
Sarragaic. S Dromoji aor obertaene	25.0	23.2			93%	81 - 122	5093550	09/20/05 00:1
Alcohols by EPA Method 8015 modif	fied							
5091963-B\$1								
Methanol	50000	47700		ug/L	95%	69 - 125	5091963	09/14/05 13:1
Surrogate: Isopropyl Acetate	50000	40500		-	81%	50 - 150	5091963	09/14/05 13:1
Extractable Petroleum Hydrocarbon	16							
5091917-BS1								
Diesel	1000	828		~				
Surrogate: o-Terphenyl	20.0	18.1	MNR1	ug/L	83%	43 - 119	5091917	09/15/05 21:1
g.	20,0	16.1			90%	55 - 150	5091917	09/15/05 21:1
Purgeable Petroleum Hydrocarbons								
5092532-B\$1								
GRO as Gasoline	1000	823		ug/L	82%	64 - 130	5092532	09/17/05 15:5
Surrogate: a,a,a-Trifluorotoluene	30.0	26.7			89%	63 - 134	5092532	09/17/05 15:5
5092532-BS2								
GRO as Gasoline	1000	862		ug/L	86%	64 - 130	5092532	00/19/05 10 0
Surrogate: a,a,a-Trifluorotoluene					5570	OT - 130	2072332	09/18/05 12:3

Attn

Client ERI Petaluma (10228)

Petaluma, CA 94954

Paula Sime

601 North McDowell Blvd.

Work Order:

NOI1152

Project Name:

Exxon 7-3035 PO:4505890849

Project Number:

200313X

Received:

09/13/05 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Alcohols by EPA Method 8015 modi	fied									
5091963-MS1										
Methanol	ND	48000		ug/L	50000	96%	52 - 133	5091963	NOI1004-01	09/14/05 13:04
Surrogate: Isopropyl Acetate		40000		ug/L	50000	80%	50 - 150	5091963	NOI1004-01	09/14/05 13:04
Purgeable Petroleum Hydrocarbons										
5092532-MS1										
GRO as Gasoline	2000	4480	MHA	ug/L	1000	248%	43 - 150	5092532	NOI1398-03	09/17/05 14:53
Surrogate: a,a,a-Trifluorotoluene		27.2		ug/L	30.0	91%	63 - 134	5092532	NOI1398-03	09/17/05 14:53

Client ERI Petaluma (10228)

601 North McDowell Blvd.

Petaluma, CA 94954

Attn Paula Sime

Work Order:

NOI1152

Project Name:

Exxon 7-3035 PO:4505890849

Project Number: 20 Received: 09

200313X 09/13/05 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD Lim	nit Batch	Sample Duplicated	Analyzed Date/Time
Alcohols by EPA Method 8015 modifi 5091963-MSD1 Methanol Surrogate: Isopropyl Acetate	ied ND	49900 39300		ug/L ug/L	50000 50000	100% 79%	52 - 133 50 - 150	4 34	5091963 5091963	NOI1004-01 NOI1004-01	09/14/05 13:11 09/14/05 13:11
Purgeable Petroleum Hydrocarbons 5092532-MSD1 GRO as Gasoline Surrogate: a,a,a-Trifluorotoluene	2000	4380 27.0	МНА	ug/L ug/L	1000 30.0	238% 90%	43 - 150 63 - 134	2 27	5092532 5092532	NOI1398-03 NOI1398-03	09/17/05 15:24 09/17/05 15:24

Client ERI Petaluma (10228)

601 North McDowell Blvd.

Petaluma, CA 94954

Attn Paula Sime

Work Order:

NOI1152

Project Name:

Exxon 7-3035 PO:4505890849

Project Number:

200313X

Received:

09/13/05 08:00

CERTIFICATION SUMMARY

TestAmerica Analytical - Nashville

Method	Matrix	AIHA	Nelac	California	
EPA 524.2	Water	N/A	X	N/A	
SW846 8015B	Water	N/A	X	X	

Client ERI Petaluma (10228)

601 North McDowell Blvd.

Petaluma, CA 94954

Attn Paula Sime

Work Order:

NOI1152

Project Name:

Exxon 7-3035 PO:4505890849

Project Number: Received: 200313X 09/13/05 08:00

NELAC CERTIFICATION SUMMARY

TestAmerica Analytical - Nashville does not hold NELAC certifications for the following analytes included in this report

Method

<u>Matrix</u>

Analyte

Client ERI Petaluma (10228)

601 North McDowell Blvd.

Petaluma, CA 94954

Paula Sime

Work Order:

NOI1152

Project Name:

Exxon 7-3035 PO:4505890849

Project Number:

200313X

Received:

09/13/05 08:00

DATA QUALIFIERS AND DEFINITIONS

MHA

Attn

Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See

Blank Spike (LCS).

MNR1

There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike and/or Blank Spike

Duplicate.

COOLER RECEIPT FORM

BC#

NOI1152

Cl	lient Name : <u>ERI</u>	
C	ooler Received/Opened On: 9/13/05 Accessioned By: James D.	.Tacobe
		er e
	Log-in Personnel Si	gnature
1.	Temperature of Cooler when triaged: Degrees Celsius	
2.	Were custody seals on outside of cooler?	ESNONA
	a. If yes, how many and where:	
3.	Were custody seals on containers?	(NO)YESNA
4.	Were the seals intact, signed, and dated correctly?	
5.	Were custody papers inside cooler?	XESNO. NA
6.	Were custody papers properly filled out (ink, signed, etc)?	
7.	Did you sign the custody papers in the appropriate place?	t
8.	What kind of packing material used? Bubblewrap Peanuts Vermiculite	Foam Insert
	Ziplock baggies Paper Other	None
9,	Cooling process: Ice Ice-pack Ice (direct contact) Dry ice	Other None
10.	Did all containers arrive in good condition (unbroken)?	
	Were all container labels complete (#, date, signed, pres., etc)?	
	Did all container labels and tags agree with custody papers?	1
13.	Were correct containers used for the analysis requested?	YESNONA
14.	a. Were VOA vials received?	FESNONA
	b. Was there any observable head space present in any VOA vial?	
15.	Was sufficient amount of sample sent in each container?	TESNONA
16.	Were correct preservatives used?	YESNONA
	If not, record standard ID of preservative used here	()
17.	Was residual chlorine present?	NOYES (NA)
18.	Indicate the Airbill Tracking Number (last 4 digits for Fedex only) and Name of Courier	below:
	9300, 9322	
1	Fed-Ex UPS Velocity DHL Route Off-street	Misc.
19.	If a Non-Conformance exists, see attached or comments below:	

				••••••••			110											ı ayı		• •	
Test/Americ	g co	nsultant Name	: Environme	ntal Resolu	tions, Inc.			Exxo	n M obil	l Engl	neer	Jen	nifer	Sed	lache	ek					
+ N C O R P O R A	TED	Address	: 601 North	McDowell B	lvd		_	Tek	ephon	e Nur	nber	(510) 547-	8196							
(615) 726-0177	11152	City/State/Zip	: Petaluma,	California 9	14954		_		A	l ccou	nt #:	3876	3			·					
1		roject Manage	r Paula Simo	<u> </u>		<u> </u>	_			F	O#:	4504	2390	74							
ł ' -	/05 17:00 rele	phone Number	r: <u>(707) 766-</u>	2000			_		Fa	cility	ID#	7-30	035								
Nashville, TN 37204		Rl Job Number		-					G	Sloba	I ID#	T060	9700	734							
ExonMobil.		er Name: (Print pler Signature			<u> </u>		-	Site Address 4501 Sonoma Highway													
Shipping Method: Lab Cou			ercial Express	Othe	er:		. -	City, State Zip Santa Rosa, California, 95409													
TAT	PROVIDE:	Special Instru			 			Π	Matrix						Ana	alyze	For:				
24 hour 72 hour	EDF Report	7 CA Oxys = I			E, DIPE, 1,	2-DCA, EDB.	Use silica						Σ			<u> </u>			\Box		
48 hour 96 hour		gor Goding io		iaiyaça.							8015M	8015M	Methanol 8015M	=	24.1	_		ı			ļ
☑ 8 day	1										8	8	lon	BTEX 524.1	7 CA Oxys 524.1	Ethanol 524.1					
	<u> </u>		1	<u> </u>		PRESERV	NUMBER	草	=	ğ	TPH	ТРН	xtha	X	ô	anol					
Sample ID / Descri	ption	DATE	TIME	СОМР	GRAB	VOA/liter	VOA/liter	Water	8	Vapor	티	르	Me	ВТ	20	먑	\Box		\dashv	_	
W4389	NOI1152-01	9/8/0>	7:00			HCL/none	8/2	х			x	X	х	Х	х	Х					
																		\Box			
																			\neg		
										7	寸	_						十	\top	寸	
		l							\vdash	+	\dashv						\vdash	\dashv	\dashv	\dashv	
· · · · · · · · · · · · · · · · · · ·					<u></u>					-	-		_				\dashv	\dashv	\dashv	-	\dashv
			<u> </u>							_	_						\sqcup	4	4	_	
					<u> </u>														\perp		
																					ļ
																	\neg	\top	丁		\neg
									_	\dashv	寸				\dashv	\dashv	\neg	一十	\dashv	\dashv	
										+	+	\dashv	-					\dashv	+	-	
										-	+	-						\dashv	-	\dashv	\dashv
							l					_							丄	\perp	_
Relinquished by:	Date		Time		Received by	y :			T	īme		þ			y Con						ſ
Dantstand	9-12-05 7:30					• -		,	9/13	100						on Re ers Inta	_	_	•		
Relinquished by:	Date		Time Received by TestAmerica:				()Od	6		ime	80						eadspa				
							7/ 1/									-					